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Abstract
I describe the results of numerical simulations which test whether the
Sherrington–Kirkpatrick model, which was solved by Parisi, applies to short-
range spin glasses. I conclude that it probably does for dimension d greater than
6, but there appear to be some differences in lower dimensions. In particular,
there does not appear to be the line of transitions in a magnetic field (AT line)
which is seen in the SK model.

PACS number: 75.10.Nr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It was a pleasure to give this talk at the meeting honoring the scientific contributions of David
Sherrington. I have known David for most of his career and all of mine, since he was the
external examiner for my D. Phil. viva in 1973. Subsequently we were colleagues at Imperial
College for several years, and David hosted my sabbatical in Oxford in 2001–02. In addition,
we have had many discussions on spin glasses over the years.

Spin glasses are systems with two key ingredients: disorder, and frustration, i.e.
competition between different terms in the Hamiltonian so they cannot all be satisfied
simultaneously. Figure 1 shows a toy example of frustration with a single square of Ising
spins. (Ising spins can only point up or down.) The ‘+’ or ‘−’ on the bonds indicates
a ferromagnetic or antiferromagnetic interaction, respectively. In this example, with one
negative bond, it is impossible to minimize the energy of all the bonds so there is competition
or ‘frustration’.

Most theoretical work therefore uses the simplest model with the features of disorder and
frustration, the Edwards Anderson [1] (EA) model, whose Hamiltonian is

H = −
∑

〈i,j〉
JijSiSj −

∑

i

hiSi . (1)
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Figure 1. A toy model which shows frustration. If the interaction on the bond is a ‘+’, the spins
want to be parallel and if it is a ‘−’ they want to be antiparallel. Clearly all these conditions cannot
be met simultaneously so there is competition or ‘frustration’.

The Ising spins Si take values ±1 and lie on the sites i of a three-dimensional, simple cubic
lattice with N = L3 sites. Periodic boundary conditions are applied. The interactions Jij are
between nearest neighbors and are independent random variables with a symmetric distribution
and standard deviation unity, i.e.

[Jij ]av ≡ J0 = 0; [
J 2

ij

]1/2
av ≡ J = 1, (2)

where [· · ·]av means an average over the disorder. We will also use the notation 〈· · ·〉 to indicate
a thermal average for a particular set of interactions. The precise form of the distribution of
Jij is not very important but, for technical reasons, it will be convenient to take a Gaussian
distribution in the simulations reported here. In some of what follows we shall also include a
magnetic field hi .

Motivated by the pioneering work of Edwards and Anderson [1] (EA), David, together
with Scott Kirkpatrick, [2] (SK) proposed that the mean-field theory of spin glasses should
be the exact solution of an infinite-range version of the EA model in which there is no lattice
and the distribution of the Jij is the same for all distinct pairs i and j . In order to get a
sensible thermodynamic limit, one has to scale the variance of the distribution by N, i.e.[
J 2

ij

]1/2
av = 1/

√
N .

The SK solution of their model was of the same type as that found by EA, what we now
call the ‘replica symmetric’ (RS) solution. Perhaps the most important advance in the SK
paper, relative to EA, is that SK realized that the RS solution cannot be correct since the
entropy went negative at low temperatures (which is impossible for an Ising model since the
states can be counted).

Almeida and Thouless [3] subsequently clarified what was going wrong. They looked at
the stability of the RS solution in the magnetic field–temperature plane. They found that the
RS solution was stable above a line in this plane, see figure 2, but was unstable below this line.

The theory used the ‘replica trick’ in which averages over the quenched disorder are
carried out by making n copies (‘replicas’) of the system and letting n tend to zero. In the
RS solution, all pairs of replicas are equivalent and there is a single-order parameter. It was
clear that this ‘replica symmetry’ had to be broken below the AT line but how to do so was
not obvious, since the size of the space, n, is non-integer and tends to zero. In a tour-de-force,
Parisi [4, 5] proposed a hierarchical ‘replica symmetry breaking’ (RSB) solution with an
infinite number of parameters. Twenty-seven years after Parisi introduced his solution, its free
energy was rigorously proved to be exact by Tallegrand [6].

The Parisi solution has two important features:

• The first, as we have seen, is that there is line of phase transitions in a magnetic field (AT
line).
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Figure 2. The magnetic field–temperature phase diagram of the SK model according to Almeida
and Thouless [3]. Above the line, the replica symmetric solution of SK is correct, while below the
line one has to break the symmetry in a more complicated way, i.e. the ‘replica symmetry breaking’
(RSB) solution of Parisi.

• The second is that below the AT line the order parameter is not just a single number but
a function (actually a probability distribution), i.e. there are an infinite number of order
parameters. The theory involves the overlap between two spin configurations, q, defined
by

q = 1

N

N∑

i=1

S
(1)
i S

(2)
i , (3)

where (1) and (2) refer to two (real) copies of the system with the same interactions.
Below the AT line, q has a non-trivial distribution P(q), which, for zero field, looks as in
figure 3.

As soon as the field becomes non-zero the negative-q region is eliminated because
the symmetry is now broken (one of the two states which were related by time-reversal
symmetry in the zero field is suppressed), and there is a non-zero weight in the distribution
between qEA (which turns out to be only very weakly dependent on field) and qmin where
0 < qmin < qEA. As the AT line is approached from below qmin tends to qEA, and above
the AT line the distribution is just a delta function at qEA. This is the replica symmetric
solution.

The motivations for SK to introduce their infinite-range model were (i) it should be
exactly solvable and (ii) the behavior of real spin glasses might have similar features to the
exact solution. We have seen that (i) is correct, though the exact solution was harder to find
than expected. Whether (ii) is a correct has been, and continues to be, controversial.

The hypothesis that real spin glasses behave in a similar way to the SK model is called the
RSB scenario for the spin glass state. Another scenario, with different predictions, has also
been proposed called the ‘droplet picture’. This was developed in most detail by Fisher and
Huse [7–9], though similar ideas were also proposed by Bray and Moore [10] and McMillan
[11]. The droplet picture differs from the RSB scenario in two important respects: (i) there is
no AT line and (ii) the order parameter is just a single number qEA, since the distribution P(q)

is just two delta functions (in zero field) at q = ±qEA, i.e. the continuous ‘non-trivial’ part in
figure 3 is missing.

In the rest of this paper, I will use numerical simulations to ascertain whether the RSB or
droplet picture (or neither) is correct. In section 2, I discuss the finite-size scaling method used

3
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P(q)

q

1

Figure 3. The order parameter distribution in the Parisi field for h = 0. Note that it is symmetric
because of time-reversal symmetry. There is a delta function at q = qEA where the two copies
are in the same valley (and one at −qEA where one copy is the time-reversed image of the other).
There is also a ‘non-trivial’ part with a non-zero weight even at q = 0, where the two copies are in
different valleys.

to analyze the data, and in section 3 I describe the parallel tempering Monte Carlo method
which speeds up equilibration at low temperature. In addition to the short-range EA model in
three dimensions described above, it will also be useful to consider a one-dimensional model
with long-range interactions. This is discussed in section 4. Results for the order parameter
distribution are discussed in section 5 and results concerning the existence of an AT line are
discussed in section 6. Finally, the conclusions are summarized in section 7.

2. Finite-size scaling

In the later sections we will use numerical simulations to investigate phase transitions in spin
glasses. Of course, a sharp transition can only occur in the thermodynamic limit, whereas
simulations are carried out on finite-size lattices. We therefore use the technique of finite-size
scaling (FSS) to extrapolate from results on a range of finite sizes to the thermodynamic limit.
Following Ballesteros et al [12], we shall find the correlation length of the finite system to be
a particularly useful quantity to analyze by FSS.

To extract a correlation length we define the spin glass susceptibility at finite
wavevector k

χSG(k) = 1

N

∑

i,j

[〈SiSj 〉2]av eik·(Ri−Rj ). (4)

We then determine the finite-size spin glass correlation length ξL from the Ornstein–Zernicke
equation:

χSG(k) = χSG(0)

1 + ξ 2
Lk2 + · · · , (5)

by fitting to k = 0 and k = kmin = 2π
L

(1, 0, 0).
The basic assumption in FSS is that the size dependence of the results comes from the

ratio L/ξbulk where

ξbulk ∼ (T − TSG)−ν (6)
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Figure 4. Sketch illustrating the temperature swaps in the parallel tempering method.

is the bulk (i.e. infinite-system size) correlation length. In particular, the correlation length ξL

of the simulated system, which has linear size L, varies as

ξL

L
= X(L1/ν(T − TSG)). (7)

Since ξL/L is dimensionless it turns out that there is no power of L multiplying the scaling
function X. This is very useful because, according to equation (7), data for different sizes
intersect at TSG. Hence the transition temperatures can be determined by eye. Furthermore,
if there is a long-range spin glass order then the data should splay out below TSG. This works
very well for the Ising spin glass [12, 13]

If we had used χSG, rather than ξL as the quantity to analyze, there would have been an
additional factor of L to an unknown power multiplying the scaling function in equation (7)
which would have complicated the analysis.

3. Parallel tempering

Experimentally, spin glass dynamics becomes very slow at low temperatures, because the
system has a very complicated ‘energy landscape’ with many ‘valleys’, separated by barriers,
in which the system gets trapped. In Monte Carlo simulations too, the system gets trapped in
a valley at low temperature, and conventional Monte Carlo simulations take a huge amount
of time to equilibrate in this region. Most Monte Carlo simulations of spin glasses, including
those described here, therefore use a modified approach known as parallel tempering (replica
exchange) [14], which helps the system get over barriers and equilibrate at low temperature.
This approach, which I now describe, is of quite general applicability to problems with a
complicated energy landscape.

One simulates a copy of the system, with the same interactions, at each of n temperatures
between Tmin = T1 and Tmax = Tn, see figure 4. The highest temperature is chosen so that
the system equilibrates fast; it has enough energy to easily get over the barriers. The lowest
temperature is chosen in the region one wants to study. In addition to the usual single-spin
updates at each temperature, one also performs temperature swaps in which the entire spin
configurations at neighboring temperatures, Tl and Tl+1, are swapped with probability

Pswap = exp[(βl − βl+1)(El − El+1)], (8)

where βl = 1/Tl , and El is the total energy of the copy at temperature Tl . It is not difficult
to check that equation (8) satisfies the detailed balance condition, and so eventually the whole
set of copies will come to thermal equilibrium.

The price one pays is that one has to simulate several (sometimes many) copies of
the system. Not all this is wasted, though, since one usually does want results at several
temperatures. However, there is an overhead because one ends up doing more sweeps than
necessary at high temperatures, and quite often one is forced to use more temperatures than
are really needed. This is particularly the case for large sizes because the spacing between

5



J. Phys. A: Math. Theor. 41 (2008) 324016 A P Young

1/2 2/3 1 σ

Infinite range 

MF

0

Finite T T = 0

SK

SG SG

Figure 5. The different types of behavior of the long-range model in d = 1 as a function of the
power σ with which the interactions fall off with distance.

temperatures has to vary with N as N−1/2, so the number of temperatures varies as N1/2, in
order that the probability in equation (8) is significant. Physically this is because the same
spin configuration must be one which occurs with significant probability at both Tl and Tl+1.
However, at low temperature, one finds that the speed up of the relaxation time more than
compensates for the overhead in simulating a large number of temperatures.

4. Model with long-range interactions

For short-range models, there is a lower critical dimension dl (equal to [15] about 2.5), below
which the finite-temperature zero-field transition disappears, and an upper critical dimension
dl (equal to 6) where the zero-field transition is described by mean-field exponents, i.e. those
of the EA–SK theory.

It is therefore of interest to investigate spin glasses not only in three dimensions but also
in higher dimensions. Even with parallel tempering it is difficult to equilibrate more than of
order a thousand spins at low temperatures, and since N = Ld the range of L is very limited
at high d. We will therefore also consider a one-dimensional model in which the interactions
fall off with a power of the distance:

Jij ∝ εij

rσ
ij

, [εij ]av = 0,
[
ε2
ij

]
av = 1. (9)

For each σ we rescale the interactions so that the mean-field transition temperature T MF
SG is

unity (for zero field).
This model is useful because one can make an analogy between varying d for short-range

models, and varying σ for the long-range model in d = 1. This has been well established for
ferromagnets, e.g. [16]. In particular there is a σl above which TSG = 0, and a σu below which
the zero-field critical behavior is mean-field-like, where σl = 1 [9] and σu = 2/3 [17]. Note
too that σ = 0 is the SK model and the range 0 � σ � 1/2 is infinite-range since

∑
j

[
J 2

ij

]
av

diverges. Furthermore, σ → ∞ is the nearest-neighbor model. Figure 5 summarizes the
behavior of the d = 1 long-range model as a function of σ .

5. Results for the order parameter distribution P(q )

In this section we consider only the zero magnetic field.
As discussed in section 1, the RSB picture of the spin glass state below TSG predicts that

the order parameter distribution P(q) should have a continuous part with a finite weight even
at q = 0. By contrast the droplet theory predicts that the weight in the continuous part should
be zero in the thermodynamic limit. More precisely, the prediction is [7] that P(0) ∝ 1/Lθ

where θ(>0) is a stiffness exponent, estimated to be about 0.20 [20, 21] for the Ising spin
glass in three dimensions.
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Figure 6. The left-hand figure is the order parameter distribution in the zero field for the short-
range model in d = 3 at T = 0.20 which is to be compared with the transition temperature of
TSG 	 0.95 [13] (from Katzgraber et al [18]). The right-hand figure is for the long-range model
with σ = 0.75, which is in the nonmean-field, finite TSG region, see figure 5. The temperature is
T = 0.10 which is to be compared with the mean-field transition temperature of 1, and the actual
transition temperature of about 0.62. (From Katzgraber and APY [19].)

The left-hand side of figure 6, from [18], shows that P(0) is independent of size for
3 � L � 8 at a temperature of 0.20, far below the transition temperature of about 0.95. The
right-hand side of this figure shows similar data, from [19], for the long-range model with
σ = 0.75, in the region predicted to have a finite transition temperature with nonmean-field
exponents. The temperature is 0.10 compared with the transition temperature of about 0.62.
The stiffness exponent is expected to be [9] d − σ = 0.25. For a large range of sizes,
32 � L � 512, one again finds that P(0) is independent of size.

For the range of sizes that can be studied, which is quite large for the 1D model, we see
that the data for P(q) are consistent with the RSB picture and inconsistent with the droplet
picture. Of course, it is possible that the sizes are too small to see the asymptotic critical
behavior. However, if the droplet theory is correct asymptotically, one would need extremely
large sizes to see it, especially for the 1D model.

6. Ising spin glass in a magnetic field

As discussed in section 1, in the SK model there is a line of phase transitions in a
magnetic field for an Ising spin glass, known as the Almeida Thouless [3] (AT) line, which
separates a spin glass phase, with divergent relaxation times and ‘replica symmetry breaking’,
from a paramagnetic ‘replica symmetric’ phase with finite relaxation times, see figure 2.
Experimentally, it is harder to determine whether there is an AT line than whether there is
a transition in the zero field. The reason is that the experimentally measurable nonlinear
susceptibility, χnl , diverges in the zero field, providing a clear signature of the transition,
whereas χnl does not diverge on the AT line at the non-zero field. Experiments therefore look
for another signature of the transition, a divergent relaxation time. In a careful experiment
[22], no such divergence in a field was found, implying the absence of an AT line. However,
not all experiments have come to the same conclusion.

7
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Figure 7. The scaled correlation length for the Ising spin glass with (random) field strength
Hr = 0.1 (Katzgraber and Young, unpublished).

Although there is no static divergent quantity measurable in experiments, there is such
a quantity which is accessible in simulations, namely the spin glass susceptibility χSG. The
zero-field definition of χSG given in equation (4) is generalized in a field to

χSG(k) = 1

N

∑

i,j

[(〈SiSj 〉 − 〈Si〉〈Sj 〉)2]av eik·(Ri−Rj ). (10)

Equation (10) is just the ‘replicon mode’ of replica field theory, which diverges for the SK
model along the AT line. More conveniently, one can obtain from the simulations a correlation
length ξL from χSG(k) using equation (5), and this can be analyzed by FSS according to
equation (7), so the transition is indicated by intersection of the data for different sizes.

In the simulations [24] we actually used a Gaussian random field, rather than a uniform
field, for technical reasons, but MFT predicts an AT line for this case too, just as for a uniform
field. Some results are shown in figure 7 for the three-dimensional, nearest-neighbor model.
The strength of the (random) field is Hr = 0.1 which is very small compared with the zero-
field transition temperature [13] TSG 	 0.96. There is no intersection, which indicates that
there is no AT line.

Subsequently, we [23] looked for the AT line in the 1D model with long-range interactions
described in section 4, and some data are shown in figure 8. One sees a clear intersection,
indicating a transition in a field, i.e. an AT line, for σ = 0.55, which is in the mean-field
regime. For σ = 0.75 and 0.85, which are in the non mean-field region, no AT line is seen.
For the other value of σ presented, 0.65, which is close to the borderline value (2/3) between
the mean-field and nonmean-field regions, there are intersections at low T for the smaller sizes,
but the data for L = 128 and 256 merge at low T indicating marginal behavior. The data for
L = 512 appear slightly higher at the lowest T which could be equilibrated, but the difference
is only about the same as the error bars.

Hence the data are consistent with there being an AT line in the region where the zero-field
transition is mean-field-like. For the short-range case this would be d > 6. (I emphasize that
we are not able to simulate directly the spin glass in a field for d > 6, and this conclusion is
obtained by analogy with the 1D model with long-range interactions.)

8
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Figure 8. Data for the scaled correlation length of the one-dimensional model with long-range
interactions in a magnetic field from [23]. Results are presented for σ = 0.55, which is in
the mean-field regime (for the zero-field transition), see figure 5, σ = 0.65, which is close to
the borderline between the mean-field and nonmean-field regions, and σ = 0.75 and 0.85, which
are in the nonmean-field region. One sees an intersection, indicating a transition in a field, i.e. an
AT line, only for σ = 0, 55. The case of σ = 0.65 seems to be borderline, as discussed in the text.

7. Conclusions

The question we posed in this paper is whether the Sherrington–Kirkpatrick model is relevant
for real spin glasses. Taken literally, the numerical results indicate that for d > 6 the answer
is ‘yes’ while for 3 � d < 6 the answer is ‘only partly’. For the latter case, the data for P(q)

are consistent with the RSB picture (i.e. with the behavior of the SK model) while the absence
of an AT line disagrees with the RSB picture. The numerical data for d < 6 thus favor an
intermediate scenario, called ‘TNT’ by Krzakala and Martin [25], see also [26].

However, it is possible that the numerical data are not in the asymptotic regime, and the
devotees of the droplet picture claim that it does hold asymptotically (at least for d < 6). If
this is so, then it must only apply for quite large lattice sizes, (especially for the analogous
one-dimensional model).

9



J. Phys. A: Math. Theor. 41 (2008) 324016 A P Young

Acknowledgments

I acknowledge support from the National Science Foundation under grant DMR 0337049. I am
also very grateful to the Hierarchical Systems Research Foundation for a generous allocation
of computer time on its Mac G5 cluster. I thank my collaborators in the work described here,
Helmut Katzgraber and Matteo Palassini, for many stimulating interactions.

References

[1] Edwards S F and Anderson P W 1975 J. Phys. F 5 965
[2] Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792
[3] de Almeida J R L and Thouless D J 1978 J. Phys. A: Math. Gen. 11 983
[4] Parisi G 1979 Phys. Rev. Lett. 43 1754
[5] Parisi G 1980 J. Phys. A: Math. Gen. 13 1101
[6] Talagrand M 2006 Ann. Math. 163 221
[7] Fisher D S and Huse D A 1986 Phys. Rev. Lett. 56 1601
[8] Huse D A and Fisher D S 1987 J. Phys. A: Math. Gen. 20 L997
[9] Fisher D S and Huse D A 1988 Phys. Rev. B 38 386

[10] Bray A J and Moore M A 1986 Heidelberg Colloquium on Glassy Dynamics and Optimization
ed L Van Hemmen and I Morgenstern (Berlin: Springer) p 121

[11] McMillan W L 1984 J. Phys. A: Math. Gen. 17 3179
[12] Ballesteros H G, Cruz A, Fernandez L A, Martin-Mayor V, Pech J, Ruiz-Lorenzo J J, Tarancon A, Tellez P,

Ullod C L and Ungil C 2000 Phys. Rev. B 62 14237 (Preprint cond-mat/0006211)
[13] Katzgraber H G, Körner M and Young A P 2006 Phys. Rev. B 73 224432 (Preprint cond-mat/0602212)
[14] Hukushima K and Nemoto K 1996 J. Phys. Soc. Japan 65 1604
[15] Boettcher S 2005 Phys. Rev. Lett. 95 197205
[16] Fisher M E, Ma S k and Nickel B G 1972 Phys. Rev. Lett. 29 917–20
[17] Kotliar G, Anderson P W and Stein D L 1983 Phys. Rev. B 27 602
[18] Katzgraber H G, Palassini M and Young A P 2001 Phys. Rev. B 63 184422 (Preprint cond-mat/0108320)
[19] Katzgraber H G and Young A P 2003 Phys. Rev. B 67 134410 (Preprint cond-mat/0210451)
[20] Hartmann A K 1999 Phys. Rev. E 59 84
[21] Boettcher S 2004 Eur. Phys. J. B 38 83
[22] Mattsson J, Jonsson T, Nordblad P, Katori H A and Ito A 1995 Phys. Rev. Lett. 74 4305
[23] Katzgraber H G and Young A P 2005 Phys. Rev. B 72 184416 (Preprint cond-mat/0407031)
[24] Young A P and Katzgraber H G 2004 Phys. Rev. Lett. 93 207203 (Preprint cond-mat/0407031)
[25] Krzakala F and Martin O C 2000 Phys. Rev. Lett. 85 3013 (Preprint cond-mat/0002055)
[26] Palassini M and Young A P 2000 Phys. Rev. Lett. 85 3017 (Preprint cond-mat/0002134)

10

http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1088/0305-4470/20/15/012
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.62.14237
http://www.arxiv.org/abs/cond-mat/0006211
http://dx.doi.org/10.1103/PhysRevB.73.224432
http://www.arxiv.org/abs/cond-mat/0602212
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1103/PhysRevLett.95.197205
http://dx.doi.org/10.1103/PhysRevLett.29.917
http://dx.doi.org/10.1103/PhysRevB.27.602
http://dx.doi.org/10.1103/PhysRevB.63.184422
http://www.arxiv.org/abs/cond-mat/0108320
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://www.arxiv.org/abs/cond-mat/0210451
http://dx.doi.org/10.1103/PhysRevE.59.84
http://dx.doi.org/10.1140/epjb/e2004-00102-5
http://dx.doi.org/10.1103/PhysRevLett.74.4305
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://www.arxiv.org/abs/cond-mat/0407031
http://dx.doi.org/10.1103/PhysRevLett.93.207203
http://www.arxiv.org/abs/cond-mat/0407031
http://dx.doi.org/10.1103/PhysRevLett.85.3013
http://www.arxiv.org/abs/cond-mat/0002055
http://dx.doi.org/10.1103/PhysRevLett.85.3017
http://www.arxiv.org/abs/cond-mat/0002134

	1. Introduction
	2. Finite-size scaling
	3. Parallel tempering
	4. Model with long-range interactions
	5. Results
	6. Ising spin glass in a magnetic field
	7. Conclusions
	Acknowledgments
	References

